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Abstract

Health is a complex and multifaceted concept, but to date most empirical research on health
capital over the lifecycle models health as unidimensional and often relies on a single observable
variable such as self-reported health. In this paper, we develop a dynamic multidimensional factor
model for health capital that represents distinct features of health and allows for measurement error
in observed proxies for health. We focus on two broad, and distinct, dimensions of health: acute and
chronic conditions. We then estimate this model using extremely rich data on health measures and
experimental variation in medical input prices from the Rand Health Insurance Experiment (HIE).
Our findings indicate that medical care has a stronger effect on chronic health. We also find evidence
of unobserved heterogeneity in health production that is correlated with the choice of medical inputs,
which would yield a downward bias in the estimated effects of those inputs.

*University of Western Ontario
TUniversity of Western Ontario
#Lehigh University and NBER



1 Introduction

In a foundational article, Grossman (1972) defined the concept of health capital and showed its im-
portance for models of lifecycle behavior. Much like human capital, introduced by Becker (1962) and
Ben-Porath (1967), health capital is a stock that affects the productivity of labor and that can be
increased with endogenous investments. Health capital has additional features, in that it may affect
utility directly, it determines longevity, and it is subject to risk from substantial negative shocks.

For human capital, a substantial econometric and empirical literature has recently developed to
estimate the production technology (e.g., Cunha and Heckman, 2008; Cunha et al., 2010; Agostinelli
and Wiswall, 2023; Bono et al., 2020). These papers use dynamic latent factor models to model the
evolution of a multidimensional capital stock over time, where the stock itself is not observed but multiple
measures of its various dimensions are available. The stocks in a given period depends on the stocks
and inputs in the previous period; estimation must take into account that stocks and inputs may all
be measured with error. This literature has focused on two dimensions of human capital, cognitive and
noncognitive skills, and has shown that human capital is self-productive and indeed multidimensional,
and that measurement error is quantitatively important.

By contrast, the literature on health capital over the lifecycle typically models health as unidimen-
sional (following Grossman, 1972) and often relies on a single observable variable, such as self-reported
health or number of functional limitations, to serve directly as a perfect measure of the health capital
stock. Perhaps due to the fact that, in Grossman (1972)’s terminology, health may yield both “consump-
tion” and “investment” benefits (i.e., direct effects on utility, vs. effects on productivity and longevity),
there is not a standard way to define and operationalize health in these models, leaving researchers to
choose a particular variable based on the specifics of their empirical application, and, therefore, to focus
on a particular aspect of health (see, e.g., Wagstaff, 1986; Gilleskie, 1998; Bolt, 2021; McGee, 2021).!
At the same time, there are often many measures related to health in commonly used datasets, so this
approach necessarily rules out many aspects of health, and further assumes that one aspect is perfectly
observable. As a consequence, these models could mismeasure the demand for health and the effects of
health on behaviors including medical care utilization and labor force participation.

In this paper, we formulate and estimate a multidimensional dynamic latent factor model for the
production of health capital. We focus on two broad, and distinct, dimensions of health: chronic
conditions (which have long durations and typically require ongoing treatment) and acute conditions
(which onset abruptly but often resolve or can be fully treated within a short time). The effects of
investments and shocks on these two dimensions of the capital stock are qualitatively different, as are
their effects on utility, productivity, and longevity.

We use data from the Rand Health Insurance Experiment (HIE) (Manning et al., 1987), conducted
from 1974 to 1982, to estimate the production technology. The HIE provides numerous measures of
chronic and acute conditions over time, as well as exogenous variation in the price of medical care based
on random assignment to different health insurance plans. The rich set of health measures and the
exogenous variation in prices enable us to apply a dynamic factor model with multiple dimensions of
the latent capital stock and with correlated unobserved heterogeneity in the evolution of health and the
productivity of medical care.

There are several important benefits from using a latent factor model with multiple dimensions to
represent the production and evolution of health in a lifecycle model. First, the factor model makes
a distinction between measurement error and true shocks to health capital. This distinction is crucial
when modeling risk-averse agents, because only the true shocks affect utility, and hence only they
determine the dynamic uncertainty that influences the value of investments in health and of insurance
against shocks. If health capital and inputs are only noisily measured or if health capital is truly
multidimensional, then models using a particular observed variable as a perfect measure of the health

"However see Khwaja (2010) and Cronin (2019) for research using more general models for health.



stock are misspecified. Addressing this misspecification would likely improve estimates of the production
technology and would also improve estimates of all parameters in a lifecycle model where health is a
central component. Moreover this approach enables researchers to take advantage of the many health
measures available in commonly used datasets, without needing to restrict to one variable. This is
important in light of the myriad ways in which what we think of as “health” may affect peoples’ lifetime
utilities.

Second, the multidimensional framework allows for more flexible shock processes than those typically
considered in the literature. For example, if there are acute and chronic dimensions to the health capital
stock, we may expect the shock processes to differ between the dimensions. Such a framework may be
able to capture nuanced dynamics that could be missed by a unidimensional model of health capital,
while maintaining the tractable Markov assumptions typically employed by researchers. For example,
people with different combinations of acute and chronic health could have the same unidimensional
index of health capital stock but have entirely different dynamics due to a change in inputs.

Third, having good estimates of the production technology is particularly important for optimal
policy related to health investments, such as health insurance design and prices for medical care services.
For example, designing better social insurance would require us to understand the extent of ex-ante
uncertainty faced by consumers, as well as the effect of insurance on formal medical care and the effects
of those inputs on one’s utility, which depends in part on the health production function.

In this preliminary version, we show that the categorization of health into chronic and acute dimen-
sions works well and is supported by the data, and we find that medical care has a stronger effect on
chronic health. We also find evidence of unobserved heterogeneity in health production that is corre-
lated with the choice of medical inputs, which would yield a downward bias in the estimated effects
of those inputs. To provide a quantitative illustration of the estimated model, we plot the evolution
of acute and chronic health for a representative individual under different scenarios. This shows that
acute health depreciates more slowly than chronic health, but chronic health responds more to medical
care inputs, and that when the price of medical care is lower, more inputs are chosen so chronic health
is relatively greater.

In the paper below, we first specify the model (Section 2) and measurement system (Section 3), then
describe the data and measure construction (Section 4) and assess the measurement system, where we
see that using acute and chronic dimensions works well (Section 4.3). The empirical implementation
is described very briefly in Section 5, and the estimates of the model and measurement system are
presented in Section 6.

Here we briefly discuss the most relevant literature. This paper is close to the literature specifying
and estimating dynamic models of health, where health production plays a key role. In the first struc-
tural estimation of a model based on the work of Grossman (1972), Gilleskie (1998) used a dynamic
model of acute health to study the determinants and effects of medical care on the duration of sick
spells. Khwaja (2010) used a lifecycle model of choice of insurance on medical care utilization and sub-
sequent health outcomes (self-reported health or death) to study willingness to pay for Medicare and
Fout and Gilleskie (2015) used a dynamic model to study the choices of health insurance and medical
and nonmedical inputs, and subsequent health outcomes, for diabetes patients. More recently, Cronin
(2019) used a within-year dynamic model, to study how people choose a health insurance plan and a
medical input; notably, this paper also models both acute and chronic dimensions of health. Finally,
Bolt (2021) develops and estimates a dynastic model of lifecycle health and cognitive skill investments
from childhood through adulthood, focusing on obesity. All of these papers feature a self-productive, or
dynamic, health production function, yet none treat the health argument or inputs of the production
function as potentially mismeasured.?

2There is work studying the effect of early resources and investments, namely, education, on later health outcomes (see,
e.g., Conti and Heckman, 2010). We allow for education to affect the initial distribution of one’s health but then model
specific market medical inputs using the detailed data from the HIE. Also somewhat related is research assessing which



Eslami and Karimi (2018) also use the Rand HIE to estimate a production technology mapping
determinants of health capital and a medical input (spending), with an interaction, to future health.
They do this to help achieve their goal of understanding the relationship between spending on health
care and income, both in the cross section and over time. Health is unidimensional (indeed, it needs to
be globally ordered for their research goals) and not self-productive in their model (their measures of
initial and final health are not comparable, nor do they need to be, for their analysis). Given the quite
different goals and focuses of Eslami and Karimi (2018) and our paper, it is most natural to view the
two papers as highly complementary.

2 Model

This section presents our model of health capital production, along with a nonstructural approximation
of the policy function for medical input choices. Time is discrete. We present the model for one person
i, so we suppress that index in this section.

Initial conditions The initial conditions at the start of the Rand HIE can be split into observed
variables and unobserved latent factors. Let xy measure relevant observable individual characteristics
at the time of the start of the HIE (e.g., age at enrollment). Just before the start of the experiment, the
health insurance plan p is randomly assigned. There are four continuous latent factors: two dimensions
of health capital, as well as permanent income and a latent investment in health (the medical input)
described further below. Health capital is comprised of acute and chronic dimensions, and the stock at
the end of period t is denoted hy = [at, ¢]. The latent permanent income is denoted y (as the notation
indicates, it is assumed to be constant during the study period).

The joint distribution of health capital and income just before the beginning of the HIE is specified
as multivariate normal, as follows:

[lnag,Inco,Iny]" ~ N(uo(zo), Xo). (1)

We also model a persistent, unobserved determinant of health, ¢, where In{ ~ N (0, 1), which through
the individual’s (unspecified) optimization problem may affect the choice of medical inputs. The ( is
distributed independently from the other latent factors.

Policy function We focus on investments in health that are achieved by formal medical care, which
we also sometimes refer to as “utilization”. We model this medical input as a latent variable, m;. The
data contain experimental variation in the price of medical inputs due to the randomly assigned plans,
which will help to estimate the policy function for medical input choices, given the endogeneity of health.
For example, some people were assigned to plans in which doctor’s visits were free, while others were
assigned to plans in which they had to pay 50% of the cost out of pocket (note the HIE was conducted
in the US). While we do not derive our input policy function from an explicit lifecycle structural model,
it can be thought of an approximation to a Grossman (1972)-type model (see Appendix A).

Given the frequency of corner solutions for the medical input (i.e., zero formal medical care in a
given period), it is important that the policy function accommodates them. As we will use the log of
the input when modeling health production, we specify a policy function for Inm; = In(m; + x), where
we normalize y = 1. Specifically, we adopt a “hurdle” model (Cragg, 1971), which could be motivated
by the presence of fixed costs from choosing a positive amount of the input (e.g., traveling to a doctor’s
office). Accordingly, the policy function is comprised of two components: one for the probability of

health measures “best” explain certain economic variables (Blundell et al., 2023) or using factor models to understand
health trajectories (Lange and McKee, 2012; White, 2023). While important, this work it does not endogenize health
trajectories by using an economic model of health investments.



having zero as the input choice, and another for positive values. The probability that the input is zero
(equivalently, Inm; = 0) is specified as

Pr{lnm; =0} = A (78 + ’ygxt + ’)/2 Ina;_1 + 'yg Inci_q1 + 72 Iny + 'ygp + 'yg In () , (2)

where A is the logistic CDF with location zero and scale one. The component for positive values of the
latent input is specified as

Inm;” = exp ('yar+’y;r$t+'yjlnat_1 +ytIne g +7§L1ny+vgrp+vzrlng+e;n), (3)

where €/ is IID with mean zero.> From these expressions, it is evident that we must normalize x
because it cannot be separately identified from ~§ and 'yJ 4 The z; includes age, to capture lifecycle
effects, and the v;,~, terms in eq. (2)-(3) allow current health to affect input demand, which could be
driven by either valuation of services from health consumption or the effect of health on marginal utility
stemming from non-health consumption (i.e., the “investment” channel), as described by Grossman
(1972) and more recently laid out in Gilleskie (2021). We note here that the above policy functions
abstract from some aspects of the HIE, such as how the out-of-pocket expenditure within a year is
capped at a maximum value that depends on one’s pre-HIE household income as well as the assigned
plan (see, e.g., Cronin, 2019; Hong and Mommaerts, 2021).

Health production function The stock of health evolves based on its lagged value, h;—1, current
medical inputs, m, and exogenous observed characteristics, z; (e.g., current age). We use a translog
specification because it can well approximate a CES specification (Kmenta, 1967), and nests the CES
for the special case of Cobb Douglas. Further, recent research on the identification and estimation of
dynamic factor models (Agostinelli and Wiswall, 2023; Del Bono et al., 2022; Freyberger, 2021) notes
that the translog production function has desirable properties compared to the CES specification.

The production function is as follows:

Ina; =45 + B[l + By ageaget] mar—1 + BL[1 + Be ygeaged] Incr—1+
acll + Bacageaged Inag1nc; 1+
B Inmy + By, Inmylnai—1 + B Inmy Ine—y + ﬂg In¢ + € (4)
Ince =65 + B[l + B3 qgeaged] Inaz—1 + B[l + By ggeaged] nci—1+
acll + Bacageaget] Inaz—1 Incp1+

Be, Inmy + B InmyIna,_y + By, Inmy Ine 1 + ﬁg In¢ + €.

The variable ( represents a persistent, potentially unobservable determinant of health. It would be
natural to expect Bg and Bg to have the same sign.’ The structural health shocks €, €/ are independently
distributed from the latent factors and from each other. The above specification allows for a person’s
age to affect the evolution of health by affecting the depreciation of the capital stock (e.g., 85 44e < 0)
and also allows the effect of medical inputs to depend on one’s current health. More generally, we

3This shock is degenerate in our current implementation.

4If there were more than one type of medical input (such as inpatient vs. outpatient utilization, or health behaviors)
we would have a separate policy function for each one. This is distinct from having multiple measures of a particular
medical input (e.g., outpatient expenditures and number of outpatient visits).

5In principle, these would not be difficult to explicitly include. For example, different plans would naturally create
different incentives for utilization, depending on the distance between out-of-pocket expenditures accumulated thus far
this year and one’s maximum dollar expenditure.

5When estimating we assume B¢ > 0, and allow the effect of ¢ to be unrestricted in the equation for Ina; and the
policy function.



could allow the entire production function to depend on one’s age.” We are not restricted to this above
specification; e.g., we could add in more polynomial terms.
Our current results are based on a specification that omits the (log) interaction terms:

Ina; =65 + B3 mar—1 + B¢ Inci—1 + By, Inmy + B¢ In ¢ + € (5)
Ine; =65+ BgInai—1 + By Ince—1 + By, Inmy + B¢ In ¢ + €.

3 Measurement system

Our model describes the joint distribution of the latent factors, exogenous characteristics (x) and the
assigned plan (p): [[ao, co,y, <), {[at, ct, me) Y1, 20, {z1}11,p)'. The latent factors other than ¢ are
observed with error as described by a general measurement system, similar to that in Cunha et al.
(2010), where we exploit the repeated measures of factors, as suggested by Agostinelli and Wiswall
(2023).

We estimate the policy function and health production function using the measures of the medical
input and health contained in the HIE data (Manning et al., 1987). The health measures were collected
at both enrollment into and exit from the experiment, and the input measures are observed whenever
medical care occurred (and are zero otherwise). The data contain a sufficient number of measures to
estimate a measurement system for the medical input in all periods as well as health at both enrollment
and exit. In addition, experimental variation in health plans (p) provides a source of exogenous variation
for medical input choices (m;), which provides exclusion restrictions that allow us to account for the
econometric endogeneity of m; arising from the unobserved heterogeneity ¢ in (2)-(3) and (5).

Kotlarski (1967) proves that two independent measures of each latent factor are sufficient to identify
the joint distribution of latent factors.® Therefore, in this draft we focus on the case in which there are
two, “dedicated” measures of each latent factor. However, the latent factors have no inherent scale or
location, which makes it difficult to identify the structural equations, as all of the measurement and
structural equations are generally permitted to be time-varying functions. See the recent literature
studying identification of dynamic latent factor models, Agostinelli and Wiswall (2023); Del Bono et al.
(2022); Freyberger (2021). However, Agostinelli and Wiswall (2023) note that there are some instances
where the mapping of a latent factor to its measure may be reasonably assumed to be time-invariant.
For example, as that paper’s application was academic achievement, they used the number of correct
responses on the same standardized test administered to students at different ages.

In our application, many measures of health, expenditures, and income would all quite naturally
satisfy time/age-invariance. For example, health may decline as one ages, but it is not obvious that
the relationship between health and measures of health, such as the presence of chronic conditions
or the number of days spent in bed in the previous month?, should change over time. We note here
that our paper’s starting point of modeling health as a multidimensional latent variable helps justify
this assumption, as we are capturing aspects of health that unidimensional models may not be able to
capture, and would therefore likely affect the mapping from such a (restrictive) latent representation of
health to measures of health. '

To specify the measurement system, let zf 7 denote the jth measure of the latent factor k in period
t (where k = a, c), and let JF > 2 denote the number of measures of k in period . For each dimension
of health k£ = a, ¢, for the first two measures (j = 1,2) we have:

Zf:j — )\’57] + )\27.7 ln kt + nfv.j’ (6)

"This is because we have time-invariant measures of latent factors; see discussion below.

8This result has been generalized in various ways (see, e.g., Hu and Schennach, 2008), but we will not need to use
those results here, given the incredibly rich set of measures available in the data.

9See Appendix B for a description of this variable and other limitations data we could use.



i.e., the first two measures of a health factor are each a linear function dedicated to only that factor.
Additional linear measures follow

zt“’j = )\g’j + A% Ina; + A% Ine; + nf’j, (7)

i.e., they are undedicated, or may load on both latent health factors. Note that these measures may im-

prove our estimates but are not required for identification of the structural parameters. Similarly, there

may also be (i) continuous, nonlinear, measures and (ii) ordinal measures; either may be undedicated.
Our latent income variable is constant over the study period, so we have

SYJ — Ag»]’ + )\z,j Iny + n¥7. (8)

Measures of m; may be continuous or ordered, with discrete levels, but in the current version we
assume all measures are continuous. The measurement equation for a continuous measure takes into
account that it is perfectly measured if there has been no utilization (someone can’t be observed to
receive market medical inputs if they chose to not use any):

m,cont,j m,cont,j . ~
m,cont,j )\0 ! + )\m / h’lX lf ln my S lnX (9)
t t t - ti - - )
)\gn’con Jp At 1 m?‘ + n;n’am 2 if Inmy > Iny
t . . .
where 1, is a mean-zero error and, as mentioned above, we normalize y = 1.0
4 Data

We use data from the HIE on males who were at least 18 years old at enrollment,'' and who were
randomly assigned to one of the following plans:

e uniform coinsurance plans, with coinsurance rates of 0%, 25%, 50%, or 95%
(“free,” “25coin,” “50coin,” “95coin”)

e a plan with 0% / 95% coinsurance for inpatient services / outpatient services
(“0in950ut”)

e a plan with 25% / 50% coinsurance for medical services / dental and outpatient psychiatric services
(“25coin50den&men” )

(all plans had out-of-pocket limits, see Manning et al. (1987) for details). From this initial sample of
1262, we dropped 143 (11.3%) who were suspended or exited the experiment early. We also dropped
individuals with missing data on key variables. The final sample contains 1025 individuals.

From the available data, we use detailed information on health conditions and medical services,
as well as demographics and income. The latter come from baseline interviews, and include age, race
(whether a person is white or not), years of education, and family income in each of the previous
two years. Health information was collected from two sources: self-administered questionnaires and
professional medical examinations. These were administered at both enrollment and exit, except that
a randomly selected subsample (25-50%), varying by site) was not given medical exams at enrollment.
All information on medical services was collected from health insurance claims, which were recorded as
part of the experiment.

9Tn principle, this should have a non-negative support (e.g., log-normal), so as to avoid censoring at zero. In practice,
however, our estimates of the distributions of both measures of m do not exhibit a large amount of truncation at zero.
HTndividuals from the Dayton site were excluded because they had different questionnaires at enrollment.



4.1 Measure construction

We use a large number of raw variables on health conditions to construct two summary measures of
acute health and two summary measures of chronic health. Each summary measure is generated using
a factor analysis (we use the predicted factor score from a single-factor model, estimated via maximum
likelihood) of a distinct set of raw variables. For each dimension of health capital, the goal is to have
two measures of a similar construct, so when there are multiple variables related to the same condition,
we split them between the two measures for that dimension, as detailed below.

For chronic conditions, we use the Medical Disorder Series files, which contain information from
both the questionnaires and medical exams, although most of the variables we choose come from the
latter. The specific variables used for each measure of chronic health are as follows:

e Chronic Measurement 1: hemoglobin value, sum of abnormality in electrocardiogram, forced
expiratory volume in one second, average hearing threshold for right ear, blood glucose, blood
cholesterol, systolic blood pressure, serum uric acid, total serum T4, and far vision

e Chronic Measurement 2: mean cell volume, Minnesota Code score from electrocardiogram, average
hearing threshold for left ear, hypercholesterolemia (from questionnaires), diastolic blood pressure,
blood urea nitrogen, near vision

Acute conditions do not have good coverage in the Medical Disorder Series. Instead we use information
from the self-administered questionnaires contained in other files, on health issues such as cough, sore
throat, skin rash, and bursitis. The variables come from questions that ask whether individuals had
certain symptoms or conditions, or experienced pain or concern about those conditions, over the past
30 days to 12 months. From each raw variable, we make binary variables for any indication of the
condition, and the factor analysis is applied to the latter. The specific variables used for each measure
of acute health are as follows:

e Acute Measurement 1: cough, vomiting, backaches, bursitis and skin rash
e Acute Measurement 2: cold, hernia, tuberculosis, and sprained ankle

Again, the reason to split the variables between the two measures is to have them relate to the same or
similar conditions, such as cough and cold.

After obtaining factor scores, we reverse the factor scores and use those as our measures, so higher
scores are “better”.

Last, we measure medical inputs with spending on outpatient care and number of outpatient visits
(excluding dental care). The raw data record the dates of service, and we use this to compute total
expenditures and visits for every period.'? This yields a consistent longitudinal series on the two
measures of the medical input construct (which often equal zero in any given period).

4.2 Summary statistics

We currently consider the case where we have two dedicated measures of each factor. Table 1 summarizes
our dedicated measures of each of the latent factors.

Table 2 shows means and standard deviations for important initial characteristics (such as education
and age at enrollment) as well as measures of income and health. Table 3 shows the distribution of our
sample across assigned plans. The plurality of individuals were assigned to the free care plan, followed
by the plan covering all inpatient services but requiring the individual to cover 95% of outpatient services
(“0in950ut”). As noted above, the plan “25coin50den&men” featured a 25% coinsurance rate for all
services excepting dental and mental health, for which there was a 50% coinsurance rate.

2Four-week periods are natural to use because the experiment paid participation incentives every four weeks.



Table 1: Dedicated measures of latent factors

Factor | j | Observed at | Measure
ay 1 | enroll/exit reversed factor score, as described in Section 4.1
2 | enroll/exit reversed factor score, as described in Section 4.1
ct 1 | enroll/exit reversed factor score, as described in Section 4.1
2 | enroll/exit reversed factor score, as described in Section 4.1
i 1 | each period | log of one plus the value of outpatient expenditures
2 | each period | log of one plus the number of outpatient visits
Y 1 | enroll log of household income the year before enrollment
2 | enroll log of household income two years before enrollment
Table 2: Summary statistics for estimation sample
Mean SD N
education years at enro 12.3300  3.2300 1025
white 0.8600  0.3400 1025
age at enro 36.4400 11.0300 1025
log of family income (year preceding enro) 9.1700  0.6400 968
log of family income (2nd year preceding enro) 9.1500  0.7600 650
acute measurement 1 at enro —0.0080  0.5900 1009
acute measurement 1 at exit 0.0060  0.5600 1008
acute measurement 2 at enro —0.0100  1.0300 1012
acute measurement 2 at exit 0.0400  0.8800 1008
chronic measurement 1 at enro 0.1100  0.7500 476
chronic measurement 1 at exit —0.1000  0.7500 811
chronic measurement 2 at enro 0.1500 0.7300 475
chronic measurement 2 at exit —0.1200  0.7200 810

Table 3: Distribution of sample across assigned plan

plan N Percent
free 365 35.6100
25coin 94  9.1700
25coin50den&men 103 10.0500
50coin 41  4.0000
0in950ut 265  25.8500
95coin 157 15.3200




Figure 1: Distributions of constructed health measures
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4.3 Measure assessment

Here we assess joint distributions of the constructed measures of health capital and medical inputs. To
support the estimation of the measurement system and the model, these measures must have sufficient
variation individually, as well as correlations among related measures.

Figure 1 plots the distributions of the health measures at enrollment (pink) and exit (blue). The
chronic measures exhibit more variation, with many more points of support, compared to the acute
measures, especially the second acute measure (“acute 2”). Also, the chronic measures show some
deterioration over time, while the acute measures do not. The distributions of the chronic measures
at exit (blue) are somewhat to the left of the distributions at entry (pink), while the distributions of
the acute measures largely overlap. This is consistent with ongoing nature of chronic conditions, which
may depreciate the stock of chronic health, and the temporary nature of acute conditions.

Figure 2 visualizes the joint correlations among the acute and chronic health measures at entry
(en) and exit (ex).!? The positive and significant contemporaneous correlations between the two acute
measures at entry and between the two chronic measures at entry indicate that each pair of measures is
indeed capturing a latent dimension of health. Furthermore, the correlations over time are stronger for
the chronic measures than for the acute measures, which fits with the basic distinction between chronic
and acute conditions. Thus it appears that our two sets of measures are capturing distinct dimensions
of health capital, and these dimensions exhibit patterns consistent with their labels as chronic and acute
health.

Next we consider the measures of medical inputs. The first and second rows of Table 4 present
the mean cost (here and hereafter, this is the total expenditure, and includes both out-of-pocket and
insured amounts) and number of visits, per four week period, respectively, split by whether the health
insurance plan had zero coinsurance (the “free plan” labeled “Free”) or positive coinsurance (labeled

30nly the upper triangle is displayed. Correlations that aren’t significantly different from zero at the 5% level appear
as empty circles.
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Figure 2: Correlations among dedicated health measures
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“Coins.”). As expected, both input measures are significantly higher for people assigned to the free
plan. The next two rows show the probabilities of having positive costs (third row) and positive visits,
again split by plan type, and show the same pattern: that those assigned to the free plan have a higher
likelihood of positive input levels. The last two rows show that, while the average levels of costs and
visits are also higher when considering only the positive values, the differences here are smaller than
those in the probabilities of positive amounts. That is, the differences in average levels evinced in the
top two rows is driven by the probability of positive amounts, not the intensive margin. This is also
borne out by the plots in Figure 3, of the distributions of the costs (left panel) and visits (right).
Because the measures of medical inputs systematically vary based on the assigned plan, we can
use the plans to examine the possibility of an exogenous relationship between medical inputs and
health capital. To do this, we estimate regressions of the health measures at exit on insurance plan
characteristics: an indicator for being assigned to the free care plan and the amount of the out-of-pocket
limit. The regressions also control for demographics and insurance status prior to the experiment; while
not necessary to ascribe a causal interpretation to the coefficients on plan characteristics, these variables
may help capture health at the start of the experiment and, as such, help with interpretation, and also
they may improve precision by reducing the residual variance. Table 5 presents the results. There is
no discernible relationship with the acute measure, but there is an effect on the chronic measure, from
both the out-of-pocket limit and being assigned to the free plan. This suggests that medical inputs are
mainly relevant for chronic health, while acute health may be affected more by random shocks.
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Main columns show means or percentages of levels (not logs) of cost in dollars or outpatient visits.

Table 4: Medical input measures

Variable Not free Free p-value®
Cost (3) 12 18  <0.001
Visits (#) 0.27 0.40 <0.001
Positive cost 21% 29%  <0.001
Positive visits 15% 22%  <0.001
Cost ($) | positive cost 59 61  <0.001
Visits (#) | positive visits 1.82 1.84  0.061

#Wilcoxon rank sum test or Pearson's Chi-squared test

density

0.010

0.005

0.000

Figure 3: Distributions of levels of costs and doctors visits
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Table 5: Regressions of first health measures at exit on initial conditions and plan

acute measurement 1 at exit chronic measurement 1 at exit
(1) (2)
age at enro 0.001 —0.040™**
(0.002) (0.002)
white —0.051 0.443™"*
(0.056) (0.064)
education years at enro 0.006 0.034™**
(0.006) (0.007)
only private insurance at enro 0.025 —0.177*
(0.083) (0.092)
only work insurance at enro —0.011 —0.100
(0.062) (0.070)
both work and private insurance at enro —0.036 —0.033
(0.079) (0.088)
out-of-pocket limit —0.00002 0.0003***
(0.0001) (0.0001)
free care plan —0.005 0.132*
(0.061) (0.068)
Constant —0.040 0.517"**
(0.119) (0.133)
N 967 7T
R? 0.002 0.462
F Statistic 0.278 82.459™**

p<.1; %p < .05; ***p < .01

Table 6: Production function parameters

acute estimate chronic  estimate
B —0.0012 B —0.0163
B 1.0203 B¢ 0.0069
B 0.0003 B¢ 1.0031
B8 0.0008 Be, 0.0112
Bg 0.0015 Bg 0.0081
Ing?  —21.5831  InoZ = —29.9998

5 Empirical Implementation

We assume all of the measurement errors are independently normally distributed. We estimate the
model parameters using maximum likelihood, following the the same global algorithm as Cunha and
Heckman (2008). We start by using our analytical solutions for the latent factors and measurement
system, and estimating the technology and policy functions given these values. We then maximize over
all parameters, using those obtained previously as initial guesses.

6 Estimates

Table 6 presents the preliminary point estimates for production function parameters.Consistent with
the results presented in Table 5, we can see that the effect of the health input is negligible for acute
health (5%,), but not so for chronic health (35,).

Table 7 presents the policy function parameters. The first column presents estimates of coeflicients
governing the probability m = 0 and the second column presents estimates governing the behavior of
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positive values of . Older people had higher probabilities of positive input choices (72 < 0) and higher
input levels conditional on a positive input choice (y;7 > 0). Higher levels of acute or chronic health
reduce the likelihood of positive input levels (72,72 > 0) but different effects on the input conditional
on it being positive.

Table 7: Policy function parameters

Prob(m = 0) estimate m if positive estimate
7 1.6879 i 1.2443
72 —0.0064 v+ 0.0009
o 0.9377 v+ —0.1176
70 0.2029 v 0.0560
o —0.0188 —0.0046
7 11644 o —0.0611
Plan indicators (72): Plan indicators (’y;r ):

free (base) 0.0000 free 0.0000
25coin 0.1319 25coin 0.0091
25coinb0den&men 0.0817 25coinb0den&men 0.0176
50coin 0.1842 50coin —0.0013
0in950ut 0.4143 0in950ut —0.0333
95coin 0.6263 95coin —0.0437

Table 8 presents the parameters governing the distribution of initial latent factors. The top panel
presents the means of the latent factors. All else equal, people who were older at entry had higher
average incomes, lower average values of chronic health, and, somewhat curiously, higher average values
of acute health (though this last effect is small). People with more education and those who are white
all have higher average levels of both dimensions of health as well as income. The second panel presents
the parameters for the jointly distributed deviates of initial acute and chronic health and income. There
is more dispersion in the chronic health deviate than the one for acute health. The deviates for initial
chronic and acute health are negatively correlated, but those for acute health and income and chronic
health and income are both positively correlated.

Table 9 presents the estimates of the measurement system parameters, and shows the substantial
amount of variance in each measurement attributable to measurement error. For example, the variance
(pooling over enrollment and exit) of the first measure of acute is 0.33, meaning the measurement error
accounts for the vast majority of its variation. In contrast, the pooled variance of the first chronic
health is 0.57, which means the measurement error accounts for a smaller share of this health measure’s
variation.

6.1 Trajectories and comparative statics under estimated parameters

To get a feel for how health evolves we first plot the trajectory of acute and chronic health from
enrollment until five years later for a somewhat “typical” example person, who was white, age 36 at
enrollment, and a high school graduate. We set the initial conditions to be at their mean values for
a person with these characteristics (i.e., we set the deviations of the latent factors from their means
to zero, including for In¢).'* We then simulate forward, using a single random sequence of shocks to

MFor reference, note that the standard deviations of initial (period-0) acute and chronic health (which are unaffected
by plan assignment) are, respectively, 0.219 and 0.718.
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Table 8: Initial distribution of (logs of) latent factors

Factor structure
Means of initial conditions

acute chronic

intercept —0.3219 intercept 1.0368
coef. on age at enro 0.0028 coef. on age at enro —0.0406
coef. on educ. years at enro 0.0138 coef. on educ. years at enro 0.0276
coef. on white 0.0487 coef. on white 0.2349
income

intercept 7.5862

coef. on age at enro 0.0235

coef. on educ. years at enro 0.0396

coef. on white 0.2649

Distribution of deviation from means

Var(lnap|zo) —3.0949 Cor(Inag,In colzo) —0.2114
Var(Incglzp) —1.2882 Cor(Inag, Iny|xg) 0.1308
Var(Iny|zo) —0.9052 Cor(Incp, Iny|xo) 0.0878

Note: z( is a vector containing the person’s age at enrollment, years of education at enrollment, and an indicator for
whether the person is white.

Table 9: Estimates of measurement system

acute chronic income mlm >0
Parameter measure 1 measure 2 | measure 1 measure 2 | measure 1 measure 2 | measure 1 measure 2
Intercept (A\g) —0.0106 0.0407 0.1110 0.1180 0.0000 —0.0107 0.0000 0.0000
Loading (A1) 1.0000 0.2509 1.0000 0.7505 1.0000 1.0000 1.0000 0.2714
Error variance (U?I) 0.2814 1.0218 0.1428 0.2289 0.0266 0.1890 1.1098 0.1424

Note: The loading on the first measure of each factor is normalized to one. Further, because of the natural scale of the
input measures (zero versus positive), the intercept of each is set to zero. We also fixed the loading of the second income
measure to one and the intercept for the first income measure to zero.

health (%, €f) and medical input choices (€, €).1?

Figure 4 plots the trajectories of acute (left panel) and chronic (right panel) health, if this hypo-
thetical person were assigned to the free (blue) or 95% coinsurance (red) plans. The dots correspond to
periods in which the input was zero and the triangles correspond to periods in which there was positive
medical care utilization; we focus on the extensive margin of utilization here because that was where
the most variation lies, according to the input measures. Starting with acute health, the paths under
the free and 95% coinsurance plans decline at identical rates until the fourth period, in which there is
a positive input level under the free plan but not under the 95% coinsurance plan.'® The same is true
for chronic health, although the decline is steeper. Consistent with the estimates of the effect of health
on input choices, there are more positive values of the input in later periods, as both dimensions of

5The shocks € are distributed IID uniformly on the unit interval; periods in which they exceed the probability of the
input being zero according to eq. (2) result in positive input amounts, given by eq. (3).

16Because we are fixing the initial conditions and the shocks are identical, if there is positive utilization under the 95%
coinsurance plan there will be a positive input level under the free plan, because the estimated coefficient on the probability
of zero is positive for the 95% coinsurance plan (see Table 7).
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Figure 4: Health for example person with In{ = 0, by plan type
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health decline; for example, the input was positive only once under the 95% coinsurance plan during
first 20 periods and five times during the last 20 periods. Also, the figure shows the somewhat negligible
effect of utilization on acute health and the more substantial effect on chronic health, as seen with the
parameter estimates in Table 6.

Next, to understand how the permanent unobserved heterogeneity ¢ affects outcomes, Figure 5 plots
health trajectories under the free plan, using the identical sequence of shocks as above, for two values
of In¢: a low value, half a standard deviation below its mean (red); and a high value, half a standard
deviation above its mean (blue). As above, the triangles denote periods in which the medical input was
positive. The path of acute health for the low value of In ( is similar to that under the free plan when
In{ = 0, shown in Figure 4. At our estimated parameters, lower values of ( increase the probability of a
positive input but also decrease acute health over time. The path of acute health under the high value
of In( lies above that for the low value, as the direct effect of the higher value of ( in the production
function for acute health outweighs the indirect effect that operates via the lower input amounts under
that value of {, due to the small effect of the input on acute health, resulting in a shallower decline in
acute health.

Moving on to chronic health, the path for the higher value of ( lies discernibly above than that for
the low value even before the first positive input. This contrasts with the paths of acute health in the
same periods, which are closer together due to the smaller coefficient on In ¢ in the production of acute
health. However, the effect of the lower levels of inputs chosen under the high value of ( outweighs the
otherwise flatter decline in chronic health, stemming from the direct effect via production. The result
is that, for this example at least, the higher value for unobserved heterogeneity results in higher acute
health and lower chronic health.
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Figure 5: Health for example person under free plan, by In ¢
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A Lifecycle model underlying our policy function

We sketch a Grossman (1972)-type model of investments in health capital, the policy function of which
is approximated by our policy function. For simplicity, we present this model without accounting for
details of the Rand HIE other than the random assignment of the insurance plans (e.g., we do not
explicitly account for the start/end of the Rand HIE here, or within-year effects due to out-of-pocket
limits). We also abstract from the sources of uncertainty that render the input choice a stochastic
function of the period’s pre-determined state variables in our specification.

The agent’s period utility function is

Uy = U(¢(he), gt), (10)

where the function ¢;(-) converts health capital stocks in period ¢ into service flows and g; represents
utility flows from non-health services.

Let y; denote exogenous income in period ¢ (in our specification we treat income as fixed, as the
HIE data cover only up to five years of the lifecycle) and define y = {y;}._,, and analogously define x.
The agent’s problem is

T

max Y B E (U (6i(he), 91)] (11)
{mt}?:1 t=1
s.t.

hy = Ki(he—1, M3y, X, G, €f, €f) (12)

gt = Gi(hy, mi; p,y, %, Q) (13)

(ho,y,x) given, (14)

where K is a (vector-valued) health production function and G¢(-) includes h; as an argument due to
the potential investment effect of health, and includes the input m; to reflect the cost of inputs. The
budget constraint is captured in the function G¢(-). The variable p inside G; measures shifters to the
cost of inputs m;, which are independently distributed from all other variables. The random assignment
of people to health insurance plans with different cost-sharing features in the Rand HIE ensures that
this independence is satisfied.

The maximization of (11) results in the policy functions

m:(htv Yy, X, C?p)a

where the presence of ( makes explicit the need to address econometric endogeneity when estimating
the technology (12).

B Limitations data

Here, we present information about certain undedicated health measures (i.e., those not used in the
measurement system) and how these relate to the latent health factors. These measures will be used
later as outcome variables, to illustrate features of the model quantitatively. Figure 6 plots the cor-
relations among the dedicated health measures and physical limitations measures also available in the
surveys/screening exams, pooling observations at entry and exit. The physical limitations measures
are all coded such that higher values reflect more limitations. The first limitations measure records
the number of days out of the last 30 days the respondent was confined to bed. The other limitations
measures have been converted to binary variables. We can see there’s a significant negative correlation
between the acute health measures and days in bed, but no such relationship between the chronic health
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Figure 6: Pooled correlations among dedicated health and physical limitations measures
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measures and days in bed. However, both acute and chronic health measures are significantly negatively
correlated with many of the physical limitations measures.

Table 10 presents estimates of the physical limitations measurement system, where the second dedi-
cated measures of acute and chronic have been used to instrument for the first dedicated measures. We
can see that many of the limitations measures load on both acute and chronic dimensions of health.
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